

EU Type-Examination Certificate

Certificate No

Certification Date / Certificate Validity Date

Document Validity Period

Company Name and Address

Product Name / Models

Directive

Module / Category

Technical Evaluation Report No

Product Type:

: 115-21-09-R01

: 26.08.2021-09.08.2026

: 5 Years

: CARINE EUROPE GmbH

Ammannstraße 12, 86167 Augsburg, Germany

: CM-FM002

: 2016/425 REGULATION

: MODULE B / CATEGORY III

: 115-21-09-R01

- EN 149:2001+ A1:2009 Respiratory protective devices - Filtering half masks to protect against particles

Product Material Information: CM-FM002 model products are manufactured using fabric, elastic strap, nose clip, filter layer.

Reason for revision: Different size product has been added.

Volkan AKIN 26.08.2021 Approver Okan AKEL 26.08.2021 General manager

ATTACHMENTS (115-21-09-R01)

To certify the PPE product at Category III level, C2 or D module is accompanied by applying one of the conformity assessment methods along with the EU Type Examination (Module B).

Model: CM-FM002

PPE SPECIFICATION	PERFORMANCE LEVELS
Classification	FFP2
Reusable / Single Shift Use	NR syed He

PPE produced as a single unit to fit an individual user, all the necessary instructions for manufacturing such PPE on the basis of the approved basic model:

MARKING

MANUFACTURER:

SITE I: CARINE EUROPE GMBH

RÖNTGENSTR. 40 86368 GERSTHOFEN GERMANY

SITE II: AYDAĞ TEDAVİ ve SAĞLIK HİZ. SAN. TİC. A.Ş.

YENIBOSNA MERKEZ MH. CEMAL ULUSOY CD. NO:57/2 34197

BAHÇELIEVLER/İSTANBUL TURKEY

PPE TYPE:

- EN 149:2001+ A1:2009 Respiratory protective devices - Filtering half masks to protect against particles

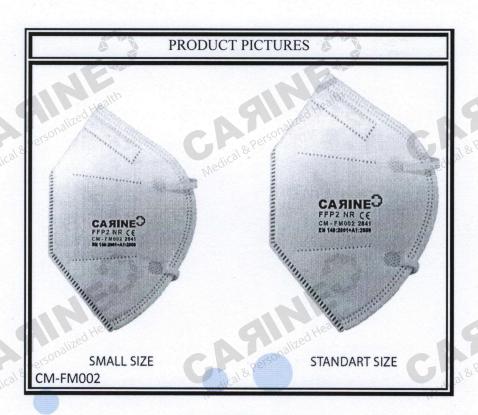
MODEL: CM-FM002

PRODUCT SIZE: Standard and small

PICTOGRAM AND PERFORMANCE LEVELS:

EN 149:2001+ A1:2009 FFP2 NR

NB 2841


Or Condition of Storage

MNA Laboratuvarları San. Tic.Ltd .Şti
Adres: Küçükbakkalköy Mahallesi Yenidoğan Cad.No:21 Ataşehir/ İstanbul
Tel: 0216 574 07 08 Faks: 0216 575 13 31 www.mnalab.com

ATTACHMENTS (115-21-09-R01)

MNA LABORATORIES SAN. TIC. LTD. ŞTİ declares that the above-mentioned product meets the requirements of the directive according to the EU Directive 2016/425, the safety of the product is covered by the conditions and use specified in this certificate and in the technical file.

DOCUMENTS IN THE TECHNICAL FILE

- Basic Health Safety Requirements
- Risk Assessment
- Test Reports
- Technical Report

MNA Laboratuvarları San. Tic.Ltd .Şti
Adres: Küçükbakkalköy Mahallesi Yenidoğan Cad.No:21 Ataşehir/İstanbul
Tel: 0216 574 07 08 Faks: 0216 575 13 31 www.mnalab.com

U-Form-002/Rev.04/12.03.2020

Page 2 / 2

TECHNICAL EVALUATION REPORT (115-21-09-R01)

Report No : 115-21-09-R01

Report Date : 26.08.2021

Application No : 115-21-09-R01

1. COMPANY INFORMATION:

CARINE EUROPE GmbH

Ammannstraße 12, 86167 Augsburg, Germany

Production Facility-1: Röntgenstraße 40 / 86368 Gersthofen / Germany

Production Facility-2: Aydağ Tedavi Ve Sağlık Hiz. San. Tic. A.Ş.

Yenibosna Merkez Mh. Cemal Ulusoy Cd. No:57/2 34197 Bahçelievler/İstanbul Turkey

Tel: +49 821 45560525 Fax: +49 821 45560524

Mail: info@carine-medical.com

2. PPE INFORMATION:

Disposable and non-sterile half mask made of particulate protection fitler material.

3. PPE TYPE IDENTIFICATION

EN 149:2001+A1:2009 Respiratory protective devices – Filtering half masks to protect against particles - Requirements, testing, marking

4. PPE PICTURES

SMALL SIZE

CM-FM002

TANDART SIZE

5. PPE DIMENSIONS:

CM-FM002 model has been found to be produced using standard and small sizes.

6. PPE PRODUCT MATERIAL INFORMATION:

The product is made of elastic strap, nonwoven fabric on the outer and inner layers and fitter material on the middle layer.

7. ESSENTIAL HEALTH AND SAFETY REQUIREMENTS

- A visual inspection was made according to EN 149:2001 +A1:2009 for ergonomics.
- Protection levels and degrees are defined by the manufacturer.

GARAGE REPERSE

MNA LABORATUVARLARI SAN. TİC. LTB. ŞTİ.

MNA LABORATUVARLARI

TECHNICAL EVALUATION REPORT (115-21-09-R01)

• Suitable construction materials were determined by visual inspection according to EN 149:2001 +A1:2009.

8. ANALYSIS AND EVALUATIONS:

EN 149:2001 +A1:2009

TESTS	PARAMETER PERFORMANCE LEVELS		RESULTS	PERFORMANCE LEVELS	EVALUATION		
		FFP1 FFP2 FFP3					
Banned Azo Dyes	< 30 mg/kg				Not applicable	-	Not applicable
Part 7.3 Visual inspection	1417	Shall also the marking and the information supplied by the manufacturer			Appropriate	analized Health	PASS
Part 7:4 Packaging	Particle filtering half mask shall be offered for sale packaged in such a way that they are protected against mechanical damage and contamination before use.				Appropriate	A Reiss	PASS Medi
Part 7.5 Material	When conditioned 8.3.2 the particle collapse.				Appropriate	-	PASS
Part 7.6 Cleaning and disinfecting	After cleaning and disinfecting the re-usable				Not applicable	Health	Not applicable
Part 7.7 Practicals performance	No negative comments should be made by the test subject regarding any of the criteria evaluated.				Appropriate	al & Personalized	PASS
Part 7.8 Finish of parts	Parts of the device likely to come into contact with the wearer shall have no sharp edge or burrs.				Appropriate	-	PASS

TESTS	PARAMETER	PERFORMANCE LEVELS			RESULTS	PERFORMANCE LEVELS	EVALUATION
		FFP1	FFP2	FFP3			
Part 7.9.1 Total inward leakage	At least 46 out of the 50 individual exercise result	<25	<11	<5 Health	See the table below	FFP2	PASS
edical & Person	At least 8 out of the 10 individual wearer arithmetic means	<22 Pe	<8	<2	See the table below	EFP2	PASS Medic

	Total Inwa	rd Leakage	(%)			
	Exercise 1	Exercise 2	Exercise 3	Exercise 4	Exercise 5	Average
Subject 1 (As recieved)	7,0	6,0	6,0	7,2	5,5	6,3
Subject 2 (As recieved)	6,7	6,0	7,2	5,5	5,4	6,2
Subject 3 (As recieved)	6,4	6,5	4,9	7,2	7,6	6,5
Subject 4 (As recieved)	7,8 alized	7,2	6,9	7,3 alized	7,6	7,4
Subject 5 (As recieved)	6,1	7,3	6,7	4,4	6,2	6,1

TECHNICAL EVALUATION REPORT (115-21-09-R01)

Subject 6 (After temperature conditioning)	6,6 alized H	6,5	6,6	6,7 nalized	7,7	6,8
Subject 7 (After temperature conditioning)	6,4	6,6	6,3 Nedical 8	5,3	6,2	6,2 Medica
Subject 8 (After temperature conditioning)	7,7	6,7	7,6	7,8	6,2	7,2
Subject 9 (After temperature conditioning)	6,0	6,5	7,6	7,2	6,5	6,8
Subject 10 (After temperature conditioning)	6,1	6,5	6,6	6,8	6,9	6,6

Subject facial dimensions

Subject	Face Length (mm)	Face Width (mm)	Face Depth (mm)	Mouth Width (mm)
1 conal	133	132 sonall	132	65
2 8 Pers	125	144 8 PE	116	65 8 Person
3	126	135	124	75 redica
4	123	133	134	74
5	117	135	122	73
6	122	142	133	66
7	113	132	114	75
8	135	123	123	65
9	122	135	133	74
10	135	142	125	83

TESTS	PARAMETER	PERFORMANCE LEVELS			RESULTS	RESULTS PERFORMANCE LEVELS		EVALUATION
"Cal & Per	U	FFP1	FFP2	FFP3		8 Per		
Part 7.9.2 Penetration of filter	Sodium chloride, 95° L/min %, max	% 20	% 6	%1	See the table below	FFP2	PASS Media	
material	Paraffin oil, 95 L/min %, max	% 20	% 6	%1	See the table below	FFP2	PASS	

Penetration of filter material	Sodium Chloride (%)	Paraffin Oil (%)
As recieved Health	4,4	4,4
As recieved itzed	4,6 alized	4,4
As recieved	4,4,e(50)	4,8
After the simulated wearing treatment	4,3	5,0
After the simulated wearing treatment	4,7	4,7
After the simulated wearing treatment	4,6	5,1
Mechanical strength and temperature conditioning(120mg)	5,6	5,7
Mechanical strength and temperature conditioning(120mg)	5,8	5,9
Mechanical strength and temperature conditioning(120mg)	5,6	5,8

TESTS	PARAMETER	PERFORMANCE LEVELS	RESULTS	PERFORMANCE EVALUAT LEVELS	EVALUATION
	Health	FFP1 FFP2 FFP3		Health	

TECHNICAL EVALUATION REPORT (115-21-09-R01)

Part 7.10 Compatibility with skin	Materials shall not be known to be likely to cause irritation or any other adverse effect to health	Appropriate	personalized He	PASS
Part 7.11 Flammibility	Mask shall not burn or not to continue to burn for more than 5 s	Flame not seen	-	PASS
Part 7.12 Carbondioxide content of the inhalation air	Shall not exceed an average of % 1	0,66 0,77 0,75	-	PASS
Part 7.13 Head harness	It can be donned and removed easily	Appropriate		PASS
Part 7.14 Field of vision	The field of vision shall acceptable in practical performance test.	Appropriate	malized Health	PASS
Part 7:15 Exhalation valve(s)	It shall withstand axially a tensile force of 10 N apply for 10 s. If fitted, shall continue to operate correctly after a continuous exhalation flow of 300 L/min over a period of 30 s.	Not applicable	S SIL	Not applicable Nedice

TESTS	PARAMETER	PERFO LEVELS	RMANO	E	RESULTS	PERFORMANCE LEVELS	EVALUATION
	FFP1	FFP2	FFP3				
Part 7.16 Breathing	Inhalation 30L/min	0,6 mbar	0,7 mbar	1,0 mbar	See the table below	FFP2	PASS
Resistance alize	Inhalation 95L/min	2,1 mbar	2,4 mbar	3,0 mbar	See the table below	FFP2	PASS
	Exhalation Nº 160L/min	3,0 mbar	3,0 mbar	3,0 mbar	See the table below	FFP2	PASS Medit

Breathing Resistance (mbar)	Inhalation 30L/min	Inhalation 95L/min
As recieved	0,5	1,7
As recieved	0,4	1,6
As recieved	0,4	1,6
After temperature conditioning	0,4	1,6
After temperature conditioning	0,5	1,6 Calth
After temperature conditioning	17ed 0,4	1,7
After the simulated wearing treatment	0,5	1,6
After the simulated wearing treatment	0,5	1,6
After the simulated wearing treatment	0,5 Med.	1,7
After the flow conditioning	-	- 2
After the flow conditioning	-	-
After the flow conditioning	-	-

Breathing Resistance 160L/min (mbar)	Facing directly ahead	Facing vertically upwards	Facing vertically downwards	Lying on the left side	Lying on the right side	
As recieved Wealth	2,7 2,8	2,8	2,7	2,8 Lealth	2,7	
As recieved in the same of the		2,8	2,7			
As recieved	2,8	2,8	2,7 pers	2,7	2,7	

TECHNICAL EVALUATION REPORT (115-21-09-R01)

- 210	A SECTION AND ADDRESS OF THE PARTY OF THE PA			2/0	
After temperature conditioning	2,8	2,7	2,8	2,7	2,8
After temperature conditioning	2,8,5000	2,7	2,8	2,7	2,7
After temperature conditioning	2,8	2,7	2,8	2,7	2,7
After the simulated wearing treatment	2,8	2,7	2,8	2,7	2,8 Medi
After the simulated wearing treatment	2,8	2,7	2,8	2,7 2,8	2,8 2,7
After the simulated wearing treatment	2,7	2,8	2,7		
After the flow conditioning	-	-	-	-	-
After the flow conditioning	-	-	-	-	-
After the flow conditioning	-	7-1	-	- 4	-
	- I	The same of the sa			

TESTS PARAMETER	PARAMETER	PERFORMANCE LEVELS			RESULTS	PERFORMANCE LEVELS	EVALUATION
	FFP1	FFP2	FFP3	C	Dersona.	CP	
Part 7.17 Clogging	After clogging the inhalation resistances shall not exceed. (valved)	mba r	5 mba r	7 mbar	Not applicable	2	Not applicable
	The exhalation resist 3 mbar at 160 L/ (valved)				Not applicable		Not applicable
edical & Personalize	After clogging the inhalation and exhalation resistances shall not exceed (valveless)	mba r dical & Pe	mba Senalize	mbar	Not applicable	Rersonalized Health	Not applicable
Part 7.18 Demountable part	All demountable pa readily connected possible by hand.				Not applicable	- **	Not applicable

9. DECISION PROPOSAL

Analysis and examinations CM-FM002 model coded personal protective equipment; Respiratory Protective Devices EN 149:2001 +A1:2009- Filtered Half Masks for Protection Against Particles - Properties, Experiments and Marking standards are evaluated. It is recommended to be certified at the performance levels specified as a result of technical evaluations.

10. ATTACHMENTS

- Basic Health Safety Requirements
- Risk Assessment
- User Instruction
- Test report (M-2021-01279)

Reason for revision : Different size product has been added.

CONTROLLER : VOLKAN AKIN

SIGNATURE :

DATE : 26.08.2021

U-FRM-056.REV.00.YAYIN TARİHİ:20.11.2019